Title of article :
Doubly periodic and multiple pole solutions of the sinh-Poisson equation: Application of reciprocal transformations in subsonic gas dynamics
Author/Authors :
Chow، نويسنده , , K.W. and Mak، نويسنده , , C.C. and Rogers، نويسنده , , C. and Schief، نويسنده , , W.K.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
13
From page :
114
To page :
126
Abstract :
Vortex patterns associated with the sinh-Poisson equation arise in a remarkable manner as relaxation states of the Navier–Stokes equations. Here, doubly periodic and multiple-pole solutions of the sinh-Poisson equation are generated via the Hirota bilinear operator formalism and exploitation of the phenomenon of coalescence of wave numbers. It is then shown how the multi-parameter reciprocal transformations of gas dynamics may be applied to a seed doubly periodic solution of the sinh-Poisson equation to generate associated periodic vortex structures valid in the subsonic flow of a generalized Kármán–Tsien gas.
Keywords :
Subsonic gas dynamics , sinh-Poisson equation , Reciprocal transformations
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2006
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553259
Link To Document :
بازگشت