Title of article :
A note on structured pseudospectra
Author/Authors :
Graillat، نويسنده , , Stef، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
In this note, we study the notion of structured pseudospectra. We prove that for Toeplitz, circulant, Hankel and symmetric structures, the structured pseudospectrum equals the unstructured pseudospectrum. We show that this is false for Hermitian and skew-Hermitian structures. We generalize the result to pseudospectra of matrix polynomials. Indeed, we prove that the structured pseudospectrum equals the unstructured pseudospectrum for matrix polynomials with Toeplitz, circulant, Hankel and symmetric structures. We conclude by giving a formula for structured pseudospectra of real matrix polynomials. The particular type of perturbations used for these pseudospectra arise in control theory.
Keywords :
Hankel matrix , Symmetric matrix , Structured perturbation , pseudospectrum , Polynomial matrix , Toeplitz matrix , Circulant matrix
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics