Title of article :
The expansion problem of anti-symmetric matrix under a linear constraint and the optimal approximation
Author/Authors :
Gong، نويسنده , , Lisha and Hu، نويسنده , , Xiyan and Zhang، نويسنده , , Lei، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
9
From page :
44
To page :
52
Abstract :
This paper mainly discusses the following two problems:Problem I A ∈ R n × m , B ∈ R m × m , X 0 ∈ ASR q × q (the set of q × q anti-symmetric matrices), find X ∈ ASR n × n such that A T XA = B , X 0 = X ( [ 1 : q ] ) , where X ( [ 1 : q ] ) is the q × q leading principal submatrix of matrix X. m II X * ∈ R n × n , find X ^ ∈ S E such that ∥ X * - X ^ ∥ = min X ∈ S E ∥ X * - X ∥ , where ∥ · ∥ is the Frobenius norm, and S E is the solution set of Problem I. cessary and sufficient conditions for the existence of and the expressions for the general solutions of Problem I are given. Moreover, the optimal approximation solution, an algorithm and a numerical example of Problem II are provided.
Keywords :
Optimal approximation , Anti-symmetric matrix , Linear constraint , Frobenius norm
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2006
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553508
Link To Document :
بازگشت