Title of article :
An algebraic multigrid method with interpolation reproducing rigid body modes for semi-definite problems in two-dimensional linear elasticity
Author/Authors :
Xiao، نويسنده , , Ying-Xiong and Zhang، نويسنده , , Ping and Shu، نويسنده , , Shi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
16
From page :
637
To page :
652
Abstract :
Based on the geometric grid information as geometric coordinates, an algebraic multigrid (AMG) method with the interpolation reproducing the rigid body modes (namely the kernel elements of semi-definite operator arising from linear elasticity) is constructed, and such method is applied to the linear elasticity problems with a traction free boundary condition and crystal problems with free boundary conditions as well. The results of various numerical experiments in two dimensions are presented. It is shown from the numerical results that the constructed AMG method is robust and efficient for such semi-definite problems, and the convergence is uniformly bounded away from one independent of the problem size. Furthermore, the AMG method proposed in this paper has better convergence rate than the commonly used AMG methods. Simultaneously, an AMG method that can preserve the quotient space, which means that if the exact solution of original problem belongs to the quotient space of discrete operator considered, then the numerical solution of AMG method is convergent in the same quotient space, is obtained using the technique of orthogonal decomposition.
Keywords :
algebraic multigrid , Semi-definite problems , Orthogonal decomposition , Linear Elasticity , Rigid body modes
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2007
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1553687
Link To Document :
بازگشت