• Title of article

    Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems

  • Author/Authors

    Higham، نويسنده , , Desmond J. and Kloeden، نويسنده , , Peter E.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    8
  • From page
    949
  • To page
    956
  • Abstract
    We generalise the current theory of optimal strong convergence rates for implicit Euler-based methods by allowing for Poisson-driven jumps in a stochastic differential equation (SDE). More precisely, we show that under one-sided Lipschitz and polynomial growth conditions on the drift coefficient and global Lipschitz conditions on the diffusion and jump coefficients, three variants of backward Euler converge with strong order of one half. The analysis exploits a relation between the backward and explicit Euler methods.
  • Keywords
    Implicit , Itô Lemma , Euler–Maruyama method , One-sided Lipschitz condition , Poisson process , stochastic differential equation , Strong convergence
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2007
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1553934