Title of article :
Optimal Lagrange interpolation by quartic splines on triangulations
Author/Authors :
Chui، نويسنده , , C.K. and Hecklin، نويسنده , , G. and Nürnberger، نويسنده , , G. and Zeilfelder، نويسنده , , F.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
20
From page :
344
To page :
363
Abstract :
We develop a local Lagrange interpolation scheme for quartic C 1 splines on triangulations. Given an arbitrary triangulation Δ , we decompose Δ into pairs of neighboring triangles and add “diagonals” to some of these pairs. Only in exceptional cases, a few triangles are split. Based on this simple refinement of Δ , we describe an algorithm for constructing Lagrange interpolation points such that the interpolation method is local, stable and has optimal approximation order. The complexity for computing the interpolating splines is linear in the number of triangles. For the local Lagrange interpolation methods known in the literature, about half of the triangles have to be split.
Keywords :
Refinement of triangulations , Local Lagrange interpolation , Bivariate splines , Optimal approximation order
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554372
Link To Document :
بازگشت