Title of article :
On the remainder term of Gauss–Radau quadratures for analytic functions
Author/Authors :
Milovanovi?، نويسنده , , Gradimir V. and Spalevi?، نويسنده , , Miodrag M. and Prani?، نويسنده , , Miroslav S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
9
From page :
281
To page :
289
Abstract :
For analytic functions the remainder term of Gauss–Radau quadrature formulae can be represented as a contour integral with a complex kernel. We study the kernel on elliptic contours with foci at the points ± 1 and a sum of semi-axes ϱ > 1 for the Chebyshev weight function of the second kind. Starting from explicit expressions of the corresponding kernels the location of their maximum modulus on ellipses is determined. The corresponding Gautschiʹs conjecture from [On the remainder term for analytic functions of Gauss–Lobatto and Gauss–Radau quadratures, Rocky Mountain J. Math. 21 (1991), 209–226] is proved.
Keywords :
Remainder term for analytic functions , Chebyshev weight function , Error Bound , Gauss–Radau quadrature formula , Contour integral representation
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2008
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1554460
Link To Document :
بازگشت