Title of article :
Kantorovichʹs type theorems for systems of equations with constant rank derivatives
Author/Authors :
Hu، نويسنده , , Nuchun and Shen، نويسنده , , Weiping and Li، نويسنده , , Chong، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
The famous Newton–Kantorovich hypothesis has been used for a long time as a sufficient condition for the convergence of Newtonʹs method to a solution of an equation. Here we present a “Kantorovich type” convergence analysis for the Gauss–Newtonʹs method which improves the result in [W.M. Häußler, A Kantorovich-type convergence analysis for the Gauss–Newton-method, Numer. Math. 48 (1986) 119–125.] and extends the main theorem in [I.K. Argyros, On the Newton-Kantorovich hypothesis for solving equations, J. Comput. Appl. Math. 169 (2004) 315–332]. Furthermore, the radius of convergence ball is also obtained.
Keywords :
Majorizing sequence , Local convergence , Lipschitz condition , Semilocal convergence , Gauss–Newtonיs method
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics