Title of article
On the global convergence of Chebyshevʹs iterative method
Author/Authors
Amat، نويسنده , , S. and Busquier، نويسنده , , S. and Gutiérrez، نويسنده , , J.M. and Hernلndez، نويسنده , , M.A.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
5
From page
17
To page
21
Abstract
In [A. Melman, Geometry and convergence of Eulerʹs and Halleyʹs methods, SIAM Rev. 39(4) (1997) 728–735] the geometry and global convergence of Eulerʹs and Halleyʹs methods was studied. Now we complete Melmanʹs paper by considering other classical third-order method: Chebyshevʹs method. By using the geometric interpretation of this method a global convergence theorem is performed. A comparison of the different hypothesis of convergence is also presented.
Keywords
Geometry global convergence , Nonlinear equations , Iterative Methods
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2008
Journal title
Journal of Computational and Applied Mathematics
Record number
1554535
Link To Document