• Title of article

    On the global convergence of Chebyshevʹs iterative method

  • Author/Authors

    Amat، نويسنده , , S. and Busquier، نويسنده , , S. and Gutiérrez، نويسنده , , J.M. and Hernلndez، نويسنده , , M.A.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    5
  • From page
    17
  • To page
    21
  • Abstract
    In [A. Melman, Geometry and convergence of Eulerʹs and Halleyʹs methods, SIAM Rev. 39(4) (1997) 728–735] the geometry and global convergence of Eulerʹs and Halleyʹs methods was studied. Now we complete Melmanʹs paper by considering other classical third-order method: Chebyshevʹs method. By using the geometric interpretation of this method a global convergence theorem is performed. A comparison of the different hypothesis of convergence is also presented.
  • Keywords
    Geometry global convergence , Nonlinear equations , Iterative Methods
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2008
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1554535