• Title of article

    Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction–diffusion problems

  • Author/Authors

    Zhu، نويسنده , , Guoqing John Chen، نويسنده , , Shaochun، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    21
  • From page
    373
  • To page
    393
  • Abstract
    The bilinear finite element methods on appropriately graded meshes are considered both for solving singular and semisingular perturbation problems. In each case, the quasi-optimal order error estimates are proved in the ε -weighted H 1 -norm uniformly in singular perturbation parameter ε , up to a logarithmic factor. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε -weighted H 1 -norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
  • Keywords
    Graded meshes , Semisingular perturbation , Finite elements , Superconvergence , error estimates , Singular Perturbation
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2008
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1554562