Title of article
Convergence and superconvergence analysis of finite element methods on graded meshes for singularly and semisingularly perturbed reaction–diffusion problems
Author/Authors
Zhu، نويسنده , , Guoqing John Chen، نويسنده , , Shaochun، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2008
Pages
21
From page
373
To page
393
Abstract
The bilinear finite element methods on appropriately graded meshes are considered both for solving singular and semisingular perturbation problems. In each case, the quasi-optimal order error estimates are proved in the ε -weighted H 1 -norm uniformly in singular perturbation parameter ε , up to a logarithmic factor. By using the interpolation postprocessing technique, the global superconvergent error estimates in ε -weighted H 1 -norm are obtained. Numerical experiments are given to demonstrate validity of our theoretical analysis.
Keywords
Graded meshes , Semisingular perturbation , Finite elements , Superconvergence , error estimates , Singular Perturbation
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2008
Journal title
Journal of Computational and Applied Mathematics
Record number
1554562
Link To Document