• Title of article

    Application of the Sinc method to a dynamic elasto-plastic problem

  • Author/Authors

    Abdella، نويسنده , , K. and Yu، نويسنده , , X. and Kucuk، نويسنده , , I.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2009
  • Pages
    20
  • From page
    626
  • To page
    645
  • Abstract
    This paper presents the application of Sinc bases to simulate numerically the dynamic behavior of a one-dimensional elastoplastic problem. The numerical methods that are traditionally employed to solve elastoplastic problems include finite difference, finite element and spectral methods. However, more recently, biorthogonal wavelet bases have been used to study the dynamic response of a uniaxial elasto-plastic rod [Giovanni F. Naldi, Karsten Urban, Paolo Venini, A wavelet-Galerkin method for elastoplasticity problems, Report 181, RWTH Aachen IGPM, and Math. Modelling and Scient. Computing, vol. 10, 2000]. In this paper the Sinc–Galerkin method is used to solve the straight elasto-plastic rod problem. Due to their exponential convergence rates and their need for a relatively fewer nodal points, Sinc based methods can significantly outperform traditional numerical methods [J. Lund, K.L. Bowers, Sinc Methods for Quadrature and Differential Equations, SIAM, Philadelphia, 1992]. However, the potential of Sinc-based methods for solving elastoplasticity problems has not yet been explored. The aim of this paper is to demonstrate the possible application of Sinc methods through the numerical investigation of the unsteady one dimensional elastic-plastic rod problem.
  • Keywords
    Sinc–Galerkin , Numerical methods , elastoplasticity , plasticity , boundary value problems , partial differential equations
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2009
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1554734