Title of article :
Critical delays and polynomial eigenvalue problems
Author/Authors :
Jarlebring، نويسنده , , Elias، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this work we present a new method to compute the delays of delay-differential equations (DDEs), such that the DDE has a purely imaginary eigenvalue. For delay-differential equations with multiple delays, the critical curves or critical surfaces in delay space (that is, the set of delays where the DDE has a purely imaginary eigenvalue) are parameterized. We show how the method is related to other works in the field by treating the case where the delays are integer multiples of some delay value, i.e., commensurate delays.
rameterization is done by solving a quadratic eigenvalue problem which is constructed from the vectorization of a matrix equation and hence typically of large size. For commensurate delay-differential equations, the corresponding equation is a polynomial eigenvalue problem. As a special case of the proposed method, we find a closed form for a parameterization of the critical surface for the scalar case.
vide several examples with visualizations where the computation is done with some exploitation of the structure of eigenvalue problems.
Keywords :
Delay-differential equations , Critical delays , Quadratic eigenvalue problems , Robustness , stability
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics