Title of article :
An augmented mixed finite element method for 3D linear elasticity problems
Author/Authors :
Gatica، نويسنده , , Gabriel N. and Mلrquez، نويسنده , , Antonio and Meddahi، نويسنده , , Salim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
15
From page :
526
To page :
540
Abstract :
In this paper we introduce and analyze a new augmented mixed finite element method for linear elasticity problems in 3D. Our approach is an extension of a technique developed recently for plane elasticity, which is based on the introduction of consistent terms of Galerkin least-squares type. We consider non-homogeneous and homogeneous Dirichlet boundary conditions and prove that the resulting augmented variational formulations lead to strongly coercive bilinear forms. In this way, the associated Galerkin schemes become well posed for arbitrary choices of the corresponding finite element subspaces. In particular, Raviart–Thomas spaces of order 0 for the stress tensor, continuous piecewise linear elements for the displacement, and piecewise constants for the rotation can be utilized. Moreover, we show that in this case the number of unknowns behaves approximately as 9.5 times the number of elements (tetrahedrons) of the triangulation, which is cheaper, by a factor of 3, than the classical P E E R S in 3D. Several numerical results illustrating the good performance of the augmented schemes are provided.
Keywords :
Augmented formulation , Linear Elasticity , Mixed-FEM
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555200
Link To Document :
بازگشت