Title of article :
Quadrature formula for approximating the singular integral of Cauchy type with unbounded weight function on the edges
Author/Authors :
Eshkuvatov، نويسنده , , Z.K. and Nik Long، نويسنده , , N.M.A. and Abdulkawi، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
New quadrature formulas (QFs) for evaluating the singular integral (SI) of Cauchy type with unbounded weight function on the edges is constructed. The construction of the QFs is based on the modification of discrete vortices method (MMDV) and linear spline interpolation over the finite interval [ − 1 , 1 ] . It is proved that the constructed QFs converge for any singular point x not coinciding with the end points of the interval [ − 1 , 1 ] . Numerical results are given to validate the accuracy of the QFs. The error bounds are found to be of order O ( h α | ln h | ) and O ( h | ln h | ) in the classes of functions H α ( [ − 1 , 1 ] ) and C 1 ( [ − 1 , 1 ] ) , respectively.
Keywords :
modification , Singular integral , quadrature formula , Discrete vortices method , Spline approximation
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics