Title of article
Summation properties of the and Li constants
Author/Authors
Coffey، نويسنده , , Mark W.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2009
Pages
7
From page
667
To page
673
Abstract
We find new summatory and other properties of the constants η j entering the Laurent expansion of the logarithmic derivative of the Riemann zeta function about s = 1 . We relate these constants to other coefficients and functions appearing in the theory of the zeta function. In particular, connections to the Li equivalence of the Riemann hypothesis are discussed and quantitatively developed. The validity of the Riemann hypothesis is reduced to the condition of the sublinear order of a certain alternating binomial sum.
Keywords
Riemann hypothesis , Laurent expansion , Riemann zeta function , Li constants , Riemann xi function , Binomial transform , Li criterion , Logarithmic derivatives
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2009
Journal title
Journal of Computational and Applied Mathematics
Record number
1555364
Link To Document