Title of article :
Summation properties of the and Li constants
Author/Authors :
Coffey، نويسنده , , Mark W.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We find new summatory and other properties of the constants η j entering the Laurent expansion of the logarithmic derivative of the Riemann zeta function about s = 1 . We relate these constants to other coefficients and functions appearing in the theory of the zeta function. In particular, connections to the Li equivalence of the Riemann hypothesis are discussed and quantitatively developed. The validity of the Riemann hypothesis is reduced to the condition of the sublinear order of a certain alternating binomial sum.
Keywords :
Riemann hypothesis , Laurent expansion , Riemann zeta function , Li constants , Riemann xi function , Binomial transform , Li criterion , Logarithmic derivatives
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics