Title of article :
Quantum Hilbert matrices and orthogonal polynomials
Author/Authors :
Andersen، نويسنده , , Jّrgen Ellegaard and Berg، نويسنده , , Christian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
723
To page :
729
Abstract :
Using the notion of quantum integers associated with a complex number q ≠ 0 , we define the quantum Hilbert matrix and various extensions. They are Hankel matrices corresponding to certain little q -Jacobi polynomials when | q | < 1 , and for the special value q = ( 1 − 5 ) ( 1 + 5 ) they are closely related to Hankel matrices of reciprocal Fibonacci numbers called Filbert matrices. We find a formula for the entries of the inverse quantum Hilbert matrix.
Keywords :
Basic orthogonal polynomials , Fibonacci numbers , Quantum integers
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555372
Link To Document :
بازگشت