Title of article :
Cubic convergence of parameter-controlled Newton-secant method for multiple zeros
Author/Authors :
Geum، نويسنده , , Young Hee and Kim، نويسنده , , Young Ik، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
7
From page :
931
To page :
937
Abstract :
Let f : C → C have a multiple zero α with integer multiplicity m ≥ 1 and be analytic in a sufficiently small neighborhood of α . For parameter-controlled Newton-secant method defined by x n + 1 = x n − λ f ( x n ) 2 f ′ ( x n ) ⋅ { f ( x n ) − f ( x n − μ f ( x n ) / f ′ ( x n ) ) } , n = 0 , 1 , 2 , … , we investigate the maximal order of convergence and the theoretical asymptotic error constant by seeking the relationship between parameters λ and μ . For various test functions, the numerical method has shown a satisfactory result with high-precision Mathematica programming.
Keywords :
Parameter-controlled , Multiple zero , Leap-frogging Newton’s method
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2009
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555396
Link To Document :
بازگشت