Title of article :
Singular-value-like decomposition for complex matrix triples
Author/Authors :
Mehl، نويسنده , , Christian and Mehrmann، نويسنده , , Volker and Xu، نويسنده , , Hongguo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
32
From page :
1245
To page :
1276
Abstract :
The classical singular value decomposition for a matrix A ∈ C m × n is a canonical form for A that also displays the eigenvalues of the Hermitian matrices A A ∗ and A ∗ A . In this paper, we develop a corresponding decomposition for A that provides the Jordan canonical forms for the complex symmetric matrices A A T and A T A . More generally, we consider the matrix triple ( A , G , G ˆ ) , where G ∈ C m × m , G ˆ ∈ C n × n are invertible and either complex symmetric or complex skew-symmetric, and we provide a canonical form under transformations of the form ( A , G , G ˆ ) ↦ ( X T A Y , X T G X , Y T G ˆ Y ) , where X , Y are nonsingular.
Keywords :
Complex bilinear form , Complex symmetric matrix , Complex skew-symmetric matrix , Hamiltonian matrix , Takagi factorization , Singular value decomposition , Canonical form
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555425
Link To Document :
بازگشت