Title of article
Menke points on the real line and their connection to classical orthogonal polynomials
Author/Authors
Mathur، نويسنده , , P. and Brauchart، نويسنده , , J.S. and Saff، نويسنده , , E.B.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
16
From page
1416
To page
1431
Abstract
We investigate the properties of extremal point systems on the real line consisting of two interlaced sets of points solving a modified minimum energy problem. We show that these extremal points for the intervals [ − 1 , 1 ] , [ 0 , ∞ ) and ( − ∞ , ∞ ) , which are analogues of Menke points for a closed curve, are related to the zeros and extrema of classical orthogonal polynomials. Use of external fields in the form of suitable weight functions instead of constraints motivates the study of “weighted Menke points” on [ 0 , ∞ ) and ( − ∞ , ∞ ) . We also discuss the asymptotic behavior of the Lebesgue constant for the Menke points on [ − 1 , 1 ] .
Keywords
Fekete points , Logarithmic energy , Menke points , orthogonal polynomials , Interval
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2010
Journal title
Journal of Computational and Applied Mathematics
Record number
1555436
Link To Document