• Title of article

    Menke points on the real line and their connection to classical orthogonal polynomials

  • Author/Authors

    Mathur، نويسنده , , P. and Brauchart، نويسنده , , J.S. and Saff، نويسنده , , E.B.، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    16
  • From page
    1416
  • To page
    1431
  • Abstract
    We investigate the properties of extremal point systems on the real line consisting of two interlaced sets of points solving a modified minimum energy problem. We show that these extremal points for the intervals [ − 1 , 1 ] , [ 0 , ∞ ) and ( − ∞ , ∞ ) , which are analogues of Menke points for a closed curve, are related to the zeros and extrema of classical orthogonal polynomials. Use of external fields in the form of suitable weight functions instead of constraints motivates the study of “weighted Menke points” on [ 0 , ∞ ) and ( − ∞ , ∞ ) . We also discuss the asymptotic behavior of the Lebesgue constant for the Menke points on [ − 1 , 1 ] .
  • Keywords
    Fekete points , Logarithmic energy , Menke points , orthogonal polynomials , Interval
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2010
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1555436