Title of article :
When do linear combinations of orthogonal polynomials yield new sequences of orthogonal polynomials?
Author/Authors :
Alfaro، نويسنده , , Manuel and Marcellلn، نويسنده , , Francisco and Peٌa، نويسنده , , Ana and Luisa Rezola، نويسنده , , M.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
Given { P n } n ≥ 0 a sequence of monic orthogonal polynomials, we analyze their linear combinations with constant coefficients and fixed length, i.e., Q n ( x ) = P n ( x ) + a 1 P n − 1 ( x ) + ⋯ + a k P n − k , a k ≠ 0 , n > k . Necessary and sufficient conditions are given for the orthogonality of the sequence { Q n } n ≥ 0 . An interesting interpretation in terms of the Jacobi matrices associated with { P n } n ≥ 0 and { Q n } n ≥ 0 is shown.
er, in the case k = 2 , we characterize the families { P n } n ≥ 0 such that the corresponding polynomials { Q n } n ≥ 0 are also orthogonal.
Keywords :
orthogonal polynomials , Recurrence relations , Linear functionals , Chebyshev polynomials , Difference equations
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics