Title of article :
Transfinite mean value interpolation in general dimension
Author/Authors :
Annegrete Bruvoll، نويسنده , , Solveig and Floater، نويسنده , , Michael S.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
1631
To page :
1639
Abstract :
Mean value interpolation is a simple, fast, linearly precise method of smoothly interpolating a function given on the boundary of a domain. For planar domains, several properties of the interpolant were established in a recent paper by Dyken and the second author, including: sufficient conditions on the boundary to guarantee interpolation for continuous data; a formula for the normal derivative at the boundary; and the construction of a Hermite interpolant when normal derivative data is also available. In this paper we generalize these results to domains in arbitrary dimension.
Keywords :
Mean value coordinates , Transfinite interpolation , Hermite interpolation
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555465
Link To Document :
بازگشت