• Title of article

    The optimal convergence rate of a finite element method for non-smooth domains

  • Author/Authors

    Soane، نويسنده , , Ana Maria and Suri، نويسنده , , Manil and Rostamian، نويسنده , , Rouben، D.C. نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2010
  • Pages
    13
  • From page
    2711
  • To page
    2723
  • Abstract
    We establish optimal (up to arbitrary ε > 0 ) convergence rates for a finite element formulation of a model second order elliptic boundary value problem in a weighted H 2 Sobolev space with 5th degree Argyris elements. This formulation arises while generalizing to the case of non-smooth domains an unconditionally stable scheme developed by Liu et al. [J.-G. Liu, J. Liu, R.L. Pego, Stability and convergence of efficient Navier–Stokes solvers via a commutator estimate, Comm. Pure Appl. Math. 60 (2007) pp. 1443–1487] for the Navier–Stokes equations. We prove the optimality for both quasiuniform and graded mesh refinements, and provide numerical results that agree with our theoretical predictions.
  • Keywords
    Corner singularities , Graded meshes , Optimal convergence rates , Finite elements , Non-convex polygonal domains
  • Journal title
    Journal of Computational and Applied Mathematics
  • Serial Year
    2010
  • Journal title
    Journal of Computational and Applied Mathematics
  • Record number

    1555560