Title of article :
The left and right inverse eigenvalue problems of generalized reflexive and anti-reflexive matrices
Author/Authors :
Liang، نويسنده , , Mao-lin and Dai، نويسنده , , Li-fang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
7
From page :
743
To page :
749
Abstract :
Let n × n complex matrices R and S be nontrivial generalized reflection matrices, i.e.,  R ∗ = R = R − 1 ≠ ± I n , S ∗ = S = S − 1 ≠ ± I n . A complex matrix A with order n is said to be a generalized reflexive (or anti-reflexive ) matrix, if R A S = A (or R A S = − A ). In this paper, the solvability conditions of the left and right inverse eigenvalue problems for generalized reflexive and anti-reflexive matrices are derived, and the general solutions are also given. In addition, the associated approximation solutions in the solution sets of the above problems are provided. The results in present paper extend some recent conclusions.
Keywords :
Generalized reflexive (anti-reflexive) matrices , Left and right eigenpairs , Inverse eigenvalue problem , Optimal approximation
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1555667
Link To Document :
بازگشت