Title of article
On the multi-component layout design with inertial force
Author/Authors
Zhu، نويسنده , , J.H. and Beckers، نويسنده , , P. and Zhang، نويسنده , , W.H.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2010
Pages
9
From page
2222
To page
2230
Abstract
The purpose of this paper is to introduce inertial forces into the proposed integrated layout optimization method designing the multi-component systems. Considering a complex packing system for which several components will be placed in a container of specific shape, the aim of the design procedure is to find the optimal location and orientation of each component, as well as the configuration of the structure that supports and interconnects the components. On the one hand, the Finite-circle Method (FCM) is used to avoid the components overlaps, and also overlaps between components and the design domain boundaries. One the other hand, the optimal material layout of the supporting structure in the design domain is designed by topology optimization. A consistent material interpolation scheme between element stiffness and inertial load is presented to avoid the singularity of localized deformation due to the presence of design dependent inertial loading when the element stiffness and the involved inertial load are weakened with the element material removal. The tested numerical example shows the proposed methods extend the actual concept of topology optimization and are efficient to generate reasonable design patterns.
Keywords
Multi-component system , Integrated layout optimization , Inertial loading , Finite-circle method
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2010
Journal title
Journal of Computational and Applied Mathematics
Record number
1555823
Link To Document