Title of article :
An almost third order finite difference scheme for singularly perturbed reaction–diffusion systems
Author/Authors :
Clavero، نويسنده , , C. and Gracia-Villa، نويسنده , , J.L. and Lisbona، نويسنده , , F.J.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
This paper addresses the numerical approximation of solutions to coupled systems of singularly perturbed reaction–diffusion problems. In particular a hybrid finite difference scheme of HODIE type is constructed on a piecewise uniform Shishkin mesh. It is proved that the numerical scheme satisfies a discrete maximum principle and also that it is third order (except for a logarithmic factor) uniformly convergent, even for the case in which the diffusion parameter associated with each equation of the system has a different order of magnitude. Numerical examples supporting the theory are given.
Keywords :
high order , Hybrid HODIE methods , Uniform convergence , Reaction–diffusion systems , Shishkin mesh
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics