Title of article :
A numerical solution of the constrained weighted energy problem
Author/Authors :
Chesnokov، نويسنده , , Andrey and Deckers، نويسنده , , Karl and Van Barel، نويسنده , , Marc، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
950
To page :
965
Abstract :
A numerical algorithm is presented to solve the constrained weighted energy problem from potential theory. As one of the possible applications of this algorithm, we study the convergence properties of the rational Lanczos iteration method for the symmetric eigenvalue problem. The constrained weighted energy problem characterizes the region containing those eigenvalues that are well approximated by the Ritz values. The region depends on the distribution of the eigenvalues, on the distribution of the poles, and on the ratio between the size of the matrix and the number of iterations. Our algorithm gives the possibility of finding the boundary of this region in an effective way. e numerical examples for different distributions of poles and eigenvalues and compare the results of our algorithm with the convergence behavior of the explicitly performed rational Lanczos algorithm.
Keywords :
Potential theory , Constrained weighted energy problem , Krylov subspace iterations , Ritz values , Eigenvalue distribution , Rational Lanczos algorithm
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2010
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1556014
Link To Document :
بازگشت