Title of article :
Superconvergence of Legendre projection methods for the eigenvalue problem of a compact integral operator
Author/Authors :
Panigrahi، نويسنده , , Bijaya Laxmi and Nelakanti، نويسنده , , Gnaneshwar، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, we consider the Galerkin and collocation methods for the eigenvalue problem of a compact integral operator with a smooth kernel using the Legendre polynomials of degree ≤ n . We prove that the error bounds for eigenvalues are of the order O ( n − 2 r ) and the gap between the spectral subspaces are of the orders O ( n − r ) in L 2 -norm and O ( n 1 / 2 − r ) in the infinity norm, where r denotes the smoothness of the kernel. By iterating the eigenvectors we show that the iterated eigenvectors converge with the orders of convergence O ( n − 2 r ) in both L 2 -norm and infinity norm. We illustrate our results with numerical examples.
Keywords :
eigenvalues , Compact operator , integral equations , Legendre polynomials , Superconvergence rates , Eigenvectors
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics