Title of article :
Shannon wavelet regularization methods for a backward heat equation
Author/Authors :
Wang، نويسنده , , Jin-Ru، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
7
From page :
3079
To page :
3085
Abstract :
We consider the backward heat equation u x x ( x , t ) = u t ( x , t ) , − ∞ < x < ∞ , 0 ≤ t < T . The solution u ( x , t ) on the final value t = T is an known function g T ( x ) . This is a typical ill-posed problem, since the solution–if it exists–does not depend continuously on the final data. In this paper, we shall give a Shannon wavelet regularization method and obtain some quite sharp error estimates between the exact solution and the approximate solution defined in the scaling space V j .
Keywords :
Backward heat equation , Ill-posed problem , Regularization error estimates
Journal title :
Journal of Computational and Applied Mathematics
Serial Year :
2011
Journal title :
Journal of Computational and Applied Mathematics
Record number :
1556193
Link To Document :
بازگشت