Title of article :
Algorithms for approximating minimization problems in Hilbert spaces
Author/Authors :
Yao، نويسنده , , Yonghong and Kang، نويسنده , , Shin Min and Liou، نويسنده , , Yeong-Cheng Liou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
In this paper, we study the following minimization problem min x ∈ F i x ( S ) ∩ Ω μ 2 〈 B x , x 〉 + 1 2 ‖ x ‖ 2 − h ( x ) , where B is a bounded linear operator, μ ≥ 0 is some constant, h is a potential function for γ ̄ f , F i x ( T ) is the set of fixed points of nonexpansive mapping S and Ω is the solution set of an equilibrium problem. This paper introduces two new algorithms (one implicit and one explicit) that can be used to find the solution of the above minimization problem.
Keywords :
Minimization problem , Equilibrium problem , Fixed point , Nonexpansive mapping , Variational inequality , Monotone mapping
Journal title :
Journal of Computational and Applied Mathematics
Journal title :
Journal of Computational and Applied Mathematics