Title of article
Equations of anisotropic elastodynamics as a symmetric hyperbolic system: Deriving the time-dependent fundamental solution
Author/Authors
Yakhno، نويسنده , , V.G. and اerdik Yaslan، نويسنده , , H.، نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 2011
Pages
14
From page
4802
To page
4815
Abstract
The dynamic system of anisotropic elasticity from three second order partial differential equations is written in the form of the time-dependent first order symmetric hyperbolic system with respect to displacement velocity and stress components. A new method of deriving the time-dependent fundamental solution of the obtained system is suggested in this paper. This method consists of the following. The Fourier transform image of the fundamental solution with respect to a space variable is presented as a power series expansion relative to the Fourier parameters. Then explicit formulae for the coefficients of these power series are derived successively. Using these formulae the computer calculation of fundamental solution components (displacement velocity and stress components arising from pulse point forces) has been made for general anisotropic media (orthorhombic and monoclinic) and the simulation of elastic waves has been obtained. These computational examples confirm the robustness of the suggested method.
Keywords
Anisotropic elasticity , Dynamic System , fundamental solution , Wave simulation
Journal title
Journal of Computational and Applied Mathematics
Serial Year
2011
Journal title
Journal of Computational and Applied Mathematics
Record number
1556350
Link To Document