Author/Authors :
Maehara، نويسنده , , Hiroshi، نويسنده ,
Abstract :
A subsetXof a Euclidean space is called a √Q-setifd(x, y)2is a rational for every pairx, yinX.To confirm anN-point √Q-set inRn,how many pairs(x, y)do we need to check, provided that theNpoints are in general position? Lets(n, N)denote the minimum number of pairs we need to check. We show that:
, N)=( N/2)forN≤n+2;
n, n+3)=(n+3/2)-1;
n, n+4)=(n+4/2)-4;
-n(n+1)/2≤s(n, N)≤nN-n(n+1)/2+⌈2(N-n-1)/3⌉.