Title of article :
A minimum distance estimator for long-memory processes
Author/Authors :
Tieslau، Margie نويسنده , , Margie A. and Schmidt، نويسنده , , Peter and Baillie، نويسنده , , Richard T.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1996
Abstract :
This paper considers a minimum distance estimator (MDE) of the differencing parameter of the fractionally integrated white noise model. The MDE minimizes the difference between sample and population autocorrelations. The paper presents calculations of asymptotic variances to examine the efficiency of the MDE relative to that of the MLE. For values of the differencing parameter less than 14, the MDE is T-consistent and asymptotically normal, and the asymptotic variance of the MDE using the first n autocorrelations approaches that of the MLE as n increases. However, there is a substantial efficiency loss if low-order autocorrelations are omitted. This implies that a nonparametric treatment of short-run dynamics will involve a substantial loss of efficiency.
Keywords :
Fractional integration , Long memory , ARFIMA , persistence
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics