Title of article :
The detection and estimation of long memory in stochastic volatility
Author/Authors :
Breidt، نويسنده , , F.Jay and Crato، نويسنده , , Nuno F. De Lima، نويسنده , , Pedro، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1998
Pages :
24
From page :
325
To page :
348
Abstract :
We propose a new time series representation of persistence in conditional variance called a long memory stochastic volatility (LMSV) model. The LMSV model is constructed by incorporating an ARFIMA process in a standard stochastic volatility scheme. Strongly consistent estimators of the parameters of the model are obtained by maximizing the spectral approximation to the Gaussian likelihood. The finite sample properties of the spectral likelihood estimator are analyzed by means of a Monte Carlo study. An empirical example with a long time series of stock prices demonstrates the superiority of the LMSV model over existing (short-memory) volatility models.
Keywords :
EGARCH , Spectral likelihood estimators , Fractional ARMA
Journal title :
Journal of Econometrics
Serial Year :
1998
Journal title :
Journal of Econometrics
Record number :
1556787
Link To Document :
بازگشت