Title of article
Non-stationary log-periodogram regression
Author/Authors
Velasco، نويسنده , , Carlos، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 1999
Pages
47
From page
325
To page
371
Abstract
We study asymptotic properties of the log-periodogram semiparametric estimate of the memory parameter d for non-stationary (d⩾12) time series with Gaussian increments, extending the results of Robinson (1995) for stationary and invertible Gaussian processes. We generalize the definition of the memory parameter d for non-stationary processes in terms of the (successively) differentiated series. We obtain that the log-periodogram estimate is asymptotically normal for d∈[12, 34) and still consistent for d∈[12, 1). We show that with adequate data tapers, a modified estimate is consistent and asymptotically normal distributed for any d, including both non-stationary and non-invertible processes. The estimates are invariant to the presence of certain deterministic trends, without any need of estimation.
Keywords
Non-stationary time series , Log-periodogram regression , Semiparametric inference , Tapering
Journal title
Journal of Econometrics
Serial Year
1999
Journal title
Journal of Econometrics
Record number
1556913
Link To Document