Title of article :
Bayesian analysis of ARMA–GARCH models: A Markov chain sampling approach
Author/Authors :
Nakatsuma، Daisuke نويسنده , , Teruo، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2000
Abstract :
We develop a Markov chain Monte Carlo method for a linear regression model with an ARMA(p, q)-GARCH(r, s) error. To generate a Monte Carlo sample from the joint posterior distribution, we employ a Markov chain sampling with the Metropolis–Hastings algorithm. As illustration, we estimate an ARMA–GARCH model of simulated time series data.
Keywords :
ARMA process , GARCH , Bayesian inference , Markov chain Monte Carlo , Metropolis–Hastings algorithm
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics