Title of article :
The Probability that a Random Real Gaussian Matrix haskReal Eigenvalues, Related Distributions, and the Circular Law
Author/Authors :
Edelman، نويسنده , , Alan، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1997
Abstract :
LetAbe annbynmatrix whose elements are independent random variables with standard normal distributions. Girkoʹs (more general) circular law states that the distribution of appropriately normalized eigenvalues is asymptotically uniform in the unit disk in the complex plane. We derive the exact expected empirical spectral distribution of the complex eigenvalues for finiten, from which convergence in the expected distribution to the circular law for normally distributed matrices may be derived. Similar methodology allows us to derive a joint distribution formula for the real Schur decomposition ofA. Integration of this distribution yields the probability thatAhas exactlykreal eigenvalues. For example, we show that the probability thatAhas all real eigenvalues is exactly 2−n(n−1)/4.
Keywords :
random matrix , circular law , eigenvalues
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis