Title of article
A New Class of Consistent Estimators for Stochastic Linear Regressive Models
Author/Authors
An، نويسنده , , Hong-Zhi and Hickernell، نويسنده , , Fred J and Zhu، نويسنده , , Li-Xing، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 1997
Pages
17
From page
242
To page
258
Abstract
In this paper we propose a new approach for estimating the unknown parameter in the stochastic linear regressive model with stationary ergodic sequence of covariates. Under mild conditions on the joint distribution of the covariate and the error, the estimator constructed is shown to be strongly consistent in two important special cases: (1) The sequence of (variate, covariate) is independent identically distributed (i.i.d.), and (2) the sequence of variates is a stationary autoregressive series. The asymptotical normality is also discussed under more assumptions on the distribution of the covariate.
Keywords
Asymptotic normality , Autoregressive model , stochastic regressive model , Robustness , consistent estimator
Journal title
Journal of Multivariate Analysis
Serial Year
1997
Journal title
Journal of Multivariate Analysis
Record number
1557474
Link To Document