Title of article :
A Nonsymmetric Correlation Inequality for Gaussian Measure
Author/Authors :
Szarek، نويسنده , , Stanislaw J. and Werner، نويسنده , , Elisabeth، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 1999
Pages :
19
From page :
193
To page :
211
Abstract :
Letμbe a Gaussian measure (say, onRn) and letK,L⊆Rnbe such thatKis convex,Lis a “layer” (i.e.,L={x: a⩽〈x, u〉⩽b} for somea, b∈Randu∈Rn), and the centers of mass (with respect toμ) ofKandLcoincide. Thenμ(K∩L)⩾μ(K)·μ(L). This is motivated by the well-known “positive correlation conjecture” for symmetric sets and a related inequality of Sidak concerning confidence regions for means of multivariate normal distributions. The proof uses the estimateΦ(x)> 1−((8/π)1/2/(3x+(x2+8)1/2))e−x2/2,x>−1, for the (standard) Gaussian cumulative distribution function, which is sharper than the classical inequality of Komatsu.
Keywords :
nonsymmetric correlation inequality , Sidakיs inequality , Gaussian tail estimates , correlation conjecture
Journal title :
Journal of Multivariate Analysis
Serial Year :
1999
Journal title :
Journal of Multivariate Analysis
Record number :
1557560
Link To Document :
بازگشت