• Title of article

    Common Principal Components for Dependent Random Vectors

  • Author/Authors

    Neuenschwander، نويسنده , , Beat E and Flury، نويسنده , , Bernard D، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2000
  • Pages
    21
  • From page
    163
  • To page
    183
  • Abstract
    Let the kp-variate random vector X be partitioned into k subvectors Xi of dimension p each, and let the covariance matrix Ψ of X be partitioned analogously into submatrices Ψij. The common principal component (CPC) model for dependent random vectors assumes the existence of an orthogonal p by p matrix β such that βtΨijβ is diagonal for all (i, j). After a formal definition of the model, normal theory maximum likelihood estimators are obtained. The asymptotic theory for the estimated orthogonal matrix is derived by a new technique of choosing proper subsets of functionally independent parameters.
  • Keywords
    eigenvector , Entropy , maximum likelihood estimation , multivariate normal distribution , patterned covariance matrices , eigenvalue , Asymptotic distribution
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2000
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1557672