• Title of article

    An Expectation Formula for the Multivariate Dirichlet Distribution

  • Author/Authors

    Letac، نويسنده , , Gérard and Massam، نويسنده , , Hélène and Richards، نويسنده , , Donald، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2001
  • Pages
    21
  • From page
    117
  • To page
    137
  • Abstract
    Suppose that the random vector (X1, …, Xq) follows a Dirichlet distribution on Rq+ with parameter (p1, …, pq)∈Rq+. For f1, …, fq>0, it is well-known that E(f1X1+…+fqXq)−(p1+…+pq)=f−p11…f−pqq. In this paper, we generalize this expectation formula to the singular and non-singular multivariate Dirichlet distributions as follows. Let Ωr denote the cone of all r×r positive-definite real symmetric matrices. For x∈Ωr and 1⩽j⩽r, let detj x denote the jth principal minor of x. For s=(s1, …, sr)∈Rr, the generalized power function of x∈Ωr is the function Δs(x)=(det1 x)s1−s2 (det2 x)s2−s3…(detr−1 x)sr−1−sr (detr x)sr; further, for any t∈R, we denote by s+t the vector (s1+t, …, sr+t). Suppose X1, …, Xq∈Ωr are random matrices such that (X1, …, Xq) follows a multivariate Dirichlet distribution with parameters p1, …, pq. Then we evaluate the expectation E[Δs1(X1)…Δsq(Xq) Δs1+…+sq+p((a+f1X1+…+fqXq)−1)], where a∈Ωr, p=p1+…+pq, f1, …, fq>0, and s1, …, sq each belong to an appropriate subset of Rr+. The result obtained is parallel to that given above for the univariate case, and remains valid even if some of the Xjʹs are singular. Our derivation utilizes the framework of symmetric cones, so that our results are valid for multivariate Dirichlet distributions on all symmetric cones.
  • Keywords
    multivariate beta distribution , multivariate gamma function , Riesz measure , Symmetric cone , Wishart distribution , Gaussian Hypergeometric function , generalized power function , Dirichlet distribution , Jordan algebra , Laplace transform , Lauricella function , Gamma distribution
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2001
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1557701