Title of article :
Eigenstructures of Spatial Design Matrices
Author/Authors :
Gorsich، نويسنده , , David J. and Genton، نويسنده , , Marc G. and Strang، نويسنده , , Gilbert، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Pages :
28
From page :
138
To page :
165
Abstract :
In estimating the variogram of a spatial stochastic process, we use a spatial design matrix. This matrix is the key to Matheronʹs variogram estimator. We show how the structure of the matrix for any dimension is based on the one-dimensional spatial design matrix, and we compute explicit eigenvalues and eigenvectors for all dimensions. This design matrix involves Kronecker products of second order finite difference matrices, with cosine eigenvectors and eigenvalues. Using the eigenvalues of the spatial design matrix, the statistics of Matheronʹs variogram estimator are determined. Finally, a small simulation study is performed.
Keywords :
KRIGING , Kronecker product , Variogram , Matheronיs estimator , Spatial statistics , Eigenvalue , Discrete cosine transform , Eigenvector
Journal title :
Journal of Multivariate Analysis
Serial Year :
2002
Journal title :
Journal of Multivariate Analysis
Record number :
1557753
Link To Document :
بازگشت