• Title of article

    On same-realization prediction in an infinite-order autoregressive process

  • Author/Authors

    Ing، نويسنده , , Ching-Kang and Wei، نويسنده , , Ching-Zong، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2003
  • Pages
    26
  • From page
    130
  • To page
    155
  • Abstract
    Let observations come from an infinite-order autoregressive (AR) process. For predicting the future of the observed time series (referred to as the same-realization prediction), we use the least-squares predictor obtained by fitting a finite-order AR model. We also allow the order to become infinite as the number of observations does in order to obtain a better approximation. Moment bounds for the inverse sample covariance matrix with an increasing dimension are established under various conditions. We then apply these results to obtain an asymptotic expression for the mean-squared prediction error of the least-squares predictor in same-realization and increasing-order settings. The second-order term of this expression is the sum of two terms which measure both the goodness of fit and model complexity. It forms the foundation for a companion paper by Ing and Wei (Order selection for same-realization predictions in autoregressive processes, Technical report C-00-09, Institute of Statistical Science, Academia Sinica, Taipei, Taiwan, ROC, 2000) which provides the first theoretical verification that AIC is asymptotically efficient for same-realization predictions. Finally, some comparisons between the least-squares predictor and the ridge regression predictor are also given.
  • Keywords
    model complexity , least squares , Ridge Regression , Same-realization prediction , Goodness of fit , Autoregressive process
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2003
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1557874