Title of article
Estimating the covariance matrix: a new approach
Author/Authors
Kubokawa، نويسنده , , T. and Srivastava، نويسنده , , M.S.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2003
Pages
20
From page
28
To page
47
Abstract
In this paper, we consider the problem of estimating the covariance matrix and the generalized variance when the observations follow a nonsingular multivariate normal distribution with unknown mean. A new method is presented to obtain a truncated estimator that utilizes the information available in the sample mean matrix and dominates the James–Stein minimax estimator. Several scale equivariant minimax estimators are also given. This method is then applied to obtain new truncated and improved estimators of the generalized variance; it also provides a new proof to the results of Shorrock and Zidek (Ann. Statist. 4 (1976) 629) and Sinha (J. Multivariate Anal. 6 (1976) 617).
Keywords
Generalized variance , covariance matrix , Improvement , decision theory , Stein result , Bartlettיs decomposition , Minimax estimation
Journal title
Journal of Multivariate Analysis
Serial Year
2003
Journal title
Journal of Multivariate Analysis
Record number
1557892
Link To Document