Title of article :
Sharp minimaxity and spherical deconvolution for super-smooth error distributions
Author/Authors :
Kim، نويسنده , , Peter T. and Koo، نويسنده , , Ja-Yong and Park، نويسنده , , Heon Jin، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2004
Pages :
9
From page :
384
To page :
392
Abstract :
The spherical deconvolution problem was first proposed by Rooij and Ruymgaart (in: G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers, Dordrecht, 1991, pp. 679–690) and subsequently solved in Healy et al. (J. Multivariate Anal. 67 (1998) 1). Kim and Koo (J. Multivariate Anal. 80 (2002) 21) established minimaxity in the L2-rate of convergence. In this paper, we improve upon the latter and establish sharp minimaxity under a super-smooth condition on the error distribution.
Keywords :
Hellinger distance , rotational harmonics , sobolev spaces , spherical harmonics
Journal title :
Journal of Multivariate Analysis
Serial Year :
2004
Journal title :
Journal of Multivariate Analysis
Record number :
1558007
Link To Document :
بازگشت