Title of article
Sharp minimaxity and spherical deconvolution for super-smooth error distributions
Author/Authors
Kim، نويسنده , , Peter T. and Koo، نويسنده , , Ja-Yong and Park، نويسنده , , Heon Jin، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2004
Pages
9
From page
384
To page
392
Abstract
The spherical deconvolution problem was first proposed by Rooij and Ruymgaart (in: G. Roussas (Ed.), Nonparametric Functional Estimation and Related Topics, Kluwer Academic Publishers, Dordrecht, 1991, pp. 679–690) and subsequently solved in Healy et al. (J. Multivariate Anal. 67 (1998) 1). Kim and Koo (J. Multivariate Anal. 80 (2002) 21) established minimaxity in the L2-rate of convergence. In this paper, we improve upon the latter and establish sharp minimaxity under a super-smooth condition on the error distribution.
Keywords
Hellinger distance , rotational harmonics , sobolev spaces , spherical harmonics
Journal title
Journal of Multivariate Analysis
Serial Year
2004
Journal title
Journal of Multivariate Analysis
Record number
1558007
Link To Document