Title of article :
Operator geometric stable laws
Author/Authors :
Kozubowski، نويسنده , , Tomasz J. and Meerschaert، نويسنده , , Mark M. and Panorska، نويسنده , , Anna K. and Scheffler، نويسنده , , Hans-Peter، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2005
Pages :
26
From page :
298
To page :
323
Abstract :
Operator geometric stable laws are the weak limits of operator normed and centered geometric random sums of independent, identically distributed random vectors. They generalize operator stable laws and geometric stable laws. In this work we characterize operator geometric stable distributions, their divisibility and domains of attraction, and present their application to finance. Operator geometric stable laws are useful for modeling financial portfolios where the cumulative price change vectors are sums of a random number of small random shocks with heavy tails, and each component has a different tail index.
Keywords :
Domains of attraction , Currency exchange rates , Heavy tails , Linnik distribution , Stable distribution , Operator stable law , Infinite divisibility , stability , Randomized sum , Geometric stable law , Skew Laplace law
Journal title :
Journal of Multivariate Analysis
Serial Year :
2005
Journal title :
Journal of Multivariate Analysis
Record number :
1558086
Link To Document :
بازگشت