Title of article
High breakdown mixture discriminant analysis
Author/Authors
Bashir، نويسنده , , Shaheena and Carter، نويسنده , , E.M.، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2005
Pages
10
From page
102
To page
111
Abstract
Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators.
Keywords
Mixture models , EM algorithm , S-estimators , Breakdown point
Journal title
Journal of Multivariate Analysis
Serial Year
2005
Journal title
Journal of Multivariate Analysis
Record number
1558117
Link To Document