Title of article :
High breakdown mixture discriminant analysis
Author/Authors :
Bashir، نويسنده , , Shaheena and Carter، نويسنده , , E.M.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2005
Pages :
10
From page :
102
To page :
111
Abstract :
Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators.
Keywords :
Mixture models , EM algorithm , S-estimators , Breakdown point
Journal title :
Journal of Multivariate Analysis
Serial Year :
2005
Journal title :
Journal of Multivariate Analysis
Record number :
1558117
Link To Document :
بازگشت