• Title of article

    High breakdown mixture discriminant analysis

  • Author/Authors

    Bashir، نويسنده , , Shaheena and Carter، نويسنده , , E.M.، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2005
  • Pages
    10
  • From page
    102
  • To page
    111
  • Abstract
    Robust S-estimation is proposed for multivariate Gaussian mixture models generalizing the work of Hastie and Tibshirani (J. Roy. Statist. Soc. Ser. B 58 (1996) 155). In the case of Gaussian Mixture models, the unknown location and scale parameters are estimated by the EM algorithm. In the presence of outliers, the maximum likelihood estimators of the unknown parameters are affected, resulting in the misclassification of the observations. The robust S-estimators of the unknown parameters replace the non-robust estimators from M-step of the EM algorithm. The results were compared with the standard mixture discriminant analysis approach using the probability of misclassification criterion. This comparison showed a slight reduction in the average probability of misclassification using robust S-estimators as compared to the standard maximum likelihood estimators.
  • Keywords
    Mixture models , EM algorithm , S-estimators , Breakdown point
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2005
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1558117