Title of article :
Density estimation by the penalized combinatorial method
Author/Authors :
Biau، نويسنده , , Gérard and Devroye، نويسنده , , Luc، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2005
Pages :
13
From page :
196
To page :
208
Abstract :
Let f be an unknown multivariate density belonging to a prespecified parametric class of densities, Fk, where k is unknown, but Fk⊂Fk+1 for all k and each Fk has finite Vapnik–Chervonenkis dimension. Given an i.i.d. sample of size n drawn from f, we show that it is possible to select automatically, and without extra restrictions on f, an estimate fn,k̂ with the property that E{∫| fn,k̂−f |}=O(1/n). Our method is inspired by the combinatorial tools developed in Devroye and Lugosi (Combinatorial Methods in Density Estimation, Springer, New York, 2001) and it includes a wide range of density models, such as mixture models or exponential families.
Keywords :
Multivariate density estimation , Mixture densities , Penalization , Vapnik–Chervonenkis dimension
Journal title :
Journal of Multivariate Analysis
Serial Year :
2005
Journal title :
Journal of Multivariate Analysis
Record number :
1558172
Link To Document :
بازگشت