Title of article :
Properties of nonlinear transformations of fractionally integrated processes
Author/Authors :
Dittmann، نويسنده , , Ingolf and Granger، نويسنده , , Clive W.J.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2002
Pages :
21
From page :
113
To page :
133
Abstract :
This paper shows that the properties of nonlinear transformations of a fractionally integrated process strongly depend on whether the initial series is stationary or not. Transforming a stationary Gaussian I(d) process with d>0 leads to a long-memory process with the same or a smaller long-memory parameter depending on the Hermite rank of the transformation. Any nonlinear transformation of an antipersistent Gaussian I(d) process is I(0)). For non-stationary I(d) processes, every polynomial transformation is non-stationary and exhibits a stochastic trend in mean and in variance. In particular, the square of a non-stationary Gaussian I(d) process still has long memory with parameter d, whereas the square of a stationary Gaussian I(d) process shows less dependence than the initial process. Simulation results for other transformations are also discussed.
Keywords :
Non-Stationarity , Fractional integration , Long memory , Nonlinearity
Journal title :
Journal of Econometrics
Serial Year :
2002
Journal title :
Journal of Econometrics
Record number :
1558223
Link To Document :
بازگشت