Title of article :
Non-white Wishart ensembles
Author/Authors :
Péché، نويسنده , , S.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Abstract :
We consider non-white Wishart ensembles 1 p X Σ X * , where X is a p × N random matrix with i.i.d. complex standard Gaussian entries and Σ is a covariance matrix, with fixed eigenvalues, close to the identity matrix. We prove that the largest eigenvalue of such random matrix ensembles exhibits a universal behavior in the large-N limit, provided Σ is “close enough” to the identity matrix. If not, we identify the limiting distribution of the largest eigenvalues, focusing on the case where the largest eigenvalues almost surely exit the support of the limiting Marchenko–Pasturʹs distribution.
Keywords :
Largest eigenvalue , random matrix , Wishart matrix , Sample covariance matrices
Journal title :
Journal of Multivariate Analysis
Journal title :
Journal of Multivariate Analysis