• Title of article

    Maximum entropy characterizations of the multivariate Liouville distributions

  • Author/Authors

    Bhattacharya، نويسنده , , Bhaskar، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2006
  • Pages
    12
  • From page
    1272
  • To page
    1283
  • Abstract
    A random vector X = ( X 1 , X 2 , … , X n ) with positive components has a Liouville distribution with parameter θ = ( θ 1 , θ 2 , … , θ n ) if its joint probability density function is proportional to h ( ∑ i = 1 n x i ) ∏ i = 1 n x i θ i - 1 , θ i > 0 [R.D. Gupta, D.S.P. Richards, Multivariate Liouville distributions, J. Multivariate Anal. 23 (1987) 233–256]. Examples include correlated gamma variables, Dirichlet and inverted Dirichlet distributions. We derive appropriate constraints which establish the maximum entropy characterization of the Liouville distributions among all multivariate distributions. Matrix analogs of the Liouville distributions are considered. Some interesting results related to I-projection from a Liouville distribution are presented.
  • Keywords
    Dirichlet distribution , Gamma variables , Inverted Dirichlet distribution , Maximum entropy principle , I-projections , Shannon entropy
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2006
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1558438