Title of article
Maximum entropy characterizations of the multivariate Liouville distributions
Author/Authors
Bhattacharya، نويسنده , , Bhaskar، نويسنده ,
Issue Information
دوفصلنامه با شماره پیاپی سال 2006
Pages
12
From page
1272
To page
1283
Abstract
A random vector X = ( X 1 , X 2 , … , X n ) with positive components has a Liouville distribution with parameter θ = ( θ 1 , θ 2 , … , θ n ) if its joint probability density function is proportional to h ( ∑ i = 1 n x i ) ∏ i = 1 n x i θ i - 1 , θ i > 0 [R.D. Gupta, D.S.P. Richards, Multivariate Liouville distributions, J. Multivariate Anal. 23 (1987) 233–256]. Examples include correlated gamma variables, Dirichlet and inverted Dirichlet distributions. We derive appropriate constraints which establish the maximum entropy characterization of the Liouville distributions among all multivariate distributions. Matrix analogs of the Liouville distributions are considered. Some interesting results related to I-projection from a Liouville distribution are presented.
Keywords
Dirichlet distribution , Gamma variables , Inverted Dirichlet distribution , Maximum entropy principle , I-projections , Shannon entropy
Journal title
Journal of Multivariate Analysis
Serial Year
2006
Journal title
Journal of Multivariate Analysis
Record number
1558438
Link To Document